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ABSTRACT 
The modeling of dependent failures, specifically Common 

Cause Failures (CCFs), is one of the most important topics in 
Probabilistic Risk Analysis (PRA). Currently, CCFs are treated 
using parametric modeling, which is based on historical failure 
events. Instead of utilizing the existing data-driven approach, 
this paper proposes the concept of physics-based CCF 
modeling, which refers to the incorporation of underlying 
physical failure mechanisms into risk models so that the root 
causes of dependency can be “explicitly” included. This 
requires building a theoretical foundation for the integration of 
Probabilistic Physics-Of-Failure (PPOF) models into PRA in a 
way that can depict the interactions of failure mechanisms and, 
ultimately, the dependencies between the multiple component 
failures. To achieve this goal, this paper highlights the 
following methodological steps (1) modeling the individual 
failure mechanisms (e.g. fatigue and wear) of two dependent 
components, (2) applying a mechanistic approach to 
deterministically model the interactions of their failure 
mechanisms, (3) utilizing probabilistic sciences (e.g. 
uncertainty modeling, Bayesian analysis) in order to make the 
model of interactions probabilistic, and (4) developing 
appropriate modeling techniques to link the physics-based CCF 
models to the system-level PRA. The proposed approach is 
beneficial for (a) reducing CCF occurrence in currently 
operating plants and (b) modeling CCFs for plants in the design 
stage. 

 
1. INTRODUCTION 

This paper reports on a new line of research, which is 
related to the development of advanced methodologies and 
techniques for a physics-based CCF modeling in PRA of 
complex systems. PRA can provide input for risk-informed 
decision making [1, 2] for the design, operation and regulatory 
oversight of complex technological systems and processes 
(including Nuclear Power Plants; NPPs).  

In 1975, the Atomic Energy Commission initiated the 
landmark Rasmussen study [3] that led to the advent of PRA in 
the nuclear industry. Over the years, PRA has grown into an 
accepted technical discipline with a wide range of applications. 
A growing number of government agencies in the U.S. have set 
a trend of using PRA to support their decisions and 
policymaking. Among these are the United States NRC, DOE, 
FAA, NASA, DOD, EPA, and FDA. There are also critical 
needs for utilizing and advancing PRA studies in other 
industries. For example, in the oil industry this could have been 
beneficial to BP to avert the oil spill in the Gulf of Mexico.   

In PRA research and applications, the nuclear industry 
continues to be the leader. USNRC relies on PRA technology 
as one of the main pillars of its regulatory and oversight 
functions. Risk-informed activities include the licensing of new 
reactors, life extension and power upgrade decisions for the 
current generation of plants, operational decisions regarding 
maintenance, system upgrades, inspections, and assessments of 
operational events. These applications of PRA, despite 
significant methodological advancements over the past three 
decades, have pushed "classical" PRA methods to their limits of 
applicability. The need for new methods or a substantial 
upgrading of the existing PRA methods and tools is evident in 
all the above-mentioned areas.  

One of the most important topics in PRA is the modeling 
of dependent failures.  In general, dependent failures are 
defined as events in which the probability of each failure 
depends on the occurrence of other failures [4]. The major 
causes of dependence among a set of systems or components 
can be explicitly modeled using system reliability methods (e.g. 
fault trees). Other dependent failures, where root causes are not 
known or are difficult to model explicitly in the system or 
component reliability analysis, are grouped under CCFs [5, 6]. 
Currently, CCFs are treated using parametric modeling based 
on historical common cause events.  

Better treatment of CCFs needs more advanced modeling 
of the underlying failure mechanisms of the elements of risk 
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scenarios (i.e. hardware failure, human error and software 
fault). For this purpose, PRA requires roots and foundations in 
such diverse fields as engineering, materials science, cognitive 
psychology, organizational behavior, and computer science. 
There have been some studies on the incorporation of human 
and organizational failure mechanisms [7, 8], and others on the 
integration of software failure mechanisms [9] into PRA. This 
paper focuses on the incorporation of underlying physical 
failure mechanisms into risk models. Its purpose is to build a 
theoretical foundation for the integration of PPOF models [4] 
into PRA frameworks in a way that can depict the interactions 
of physical failure mechanisms and, ultimately, the 
dependencies between the component failures.  

Section 2 summarizes the gaps in existing CCF and PPOF 
approaches. Section 3.1 explains the concept of physics-based 
CCF modeling and Section 3.2 highlights the methodological 
steps and the related challenges to operationalize the proposed 
concept. 

2. GAPS IN EXISTING COMMON CAUSE FAILURE 
AND PROBABILISTIC PHYSICS-OF-FAILURE 
MODELS 
 

2.1 Existing Common Cause Failure Models 

As mentioned above, the major causes of dependence 
among a set of systems or components can be explicitly 
modeled using system reliability methods (e.g. fault trees). 
Other dependent failures, where root causes are not known or 
are difficult to model explicitly in the system or component 
reliability analysis, are grouped under CCFs [5, 6]. There have 
been several definitions for CCFs over the past 30 years. One 
prevalent definition is given by Mosleh et al. [5] as: “…a subset 
of dependent events in which two or more component fault 
states exist at the same time, or in a short-time interval, and are 
direct results of a shared cause.”   

The initial approach for treating CCFs was the one used in 
the WASH-1400 [3]. Based on this simple method, the overall 
system failure probability was calculated as a geometric mean 
value of system failure probability assuming independence (PI) 
and system failure probability assuming maximum dependence 
(PD). Due to the inadequacy of this method, treatment of CCFs 
moved to parametric approaches. Parametric approaches can be 
classified based on their number of parameters into (1) single 
parameter model (β- factor model [10]) and (2) multi-parameter 
models (Multiple Greek Letter (MGL) [11], α-factor [12], 
Binomial Failure Rate (BFR) [13] methods). Multi-parameter 
models give more accurate assessments of CCFs in systems 
with higher levels of redundancy. The multi-parameter models 
are further classified into subcategories called shock and non-
shock models. Among the multi-parameter methods , BFR is 
the only shock-dependent model and it considers two types of 
common cause shocks (lethal and nonlethal), so that it is too 
complex to be widely used . Currently, MGL and α-factor 
methods are the most common parametric approaches for CCF 
modeling. [14] 

An important requirement in the quantification of CCFs, 
based on the parametric approaches, is the collection and 
proper usage of data for the estimation of model parameters. 
The common approach for implementing data for CCF models 
is presented in [15] by using Impact Vectors. This methodology 
helps interpret data involving CCF with respect to taxonomy of 
causes and coupling factors. It also helps adjust for differences 
between generic raw data and plant specific data.  

The current parametric approaches for CCF modeling are 
very dependent on the availability and quality of historical 
failure data. They are also inadequate in providing quantitative 
causal relations for CCFs. Therefore, they are not sufficient in 
(a) reducing CCF events in current operating plants, and (b) 
making design and licensing decisions for new reactors. In 
order to improve the treatment of CCFs, the following three 
aspects need to be considered:  
1. Developing “theoretical” foundations for depicting the 

underlying failure mechanisms of the elements of risk 
scenarios (i.e. hardware failures, human errors, and 
organizational behavior) to identify the root causes and 
phenomenology of dependencies.  

2. Applying appropriate “modeling techniques” (e.g., causal 
modeling) in order to explicitly and quantitatively relate 
the root causes in the failure mechanisms to the top events 
and, consequently, to the accident sequence models. 

3. Applying more advanced data-driven approaches, 
consistent with the nature and availability of the data, in 
order to “empirically” deal with dependencies (in 
situations where it is difficult to model the root failure 
mechanisms any further).  

There have been studies on the development of theories 
and techniques for the incorporation of human and 
organizational failure mechanisms [e.g. 7 and 8] and others on 
the integration of software failure mechanisms [e.g. 9] into 
PRA. Also, there are studies on using causal modeling 
techniques (e.g. Bayesian approach) for CCF modeling [16].   

The focus of this paper is to model CCFs based on the 
incorporation of the underlying physical failure mechanisms 
(and their interactions as important sources of CCFs) or the 
PPOF approach into PRA, covering both the required 
theoretical perspectives (referring to item #1 above) and 
modeling  techniques (referring to item #2 above).  

 
2.2. Existing Probabilistic Physics-Of-Failure Models 

The first attempt to consider physical characteristics in 
reliability models was in the electronic industry in the early 
60’s. This was because of unsatisfactory results when using 
exponential distributions for time-to-failure of specific products 
under degradation process. This led to the use of other 
distributions (e.g. Weibull) for time-to-failures in order to 
partially include physical aspects by considering variable 
hazard rates. The next step (in the 80’s) was the rise of 
accelerated life testing methods to incorporate the aggregate 
effects of operational conditions (i.e. stress) to life models. The 
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development of accelerated life testing, which required 
understanding the underlying failure mechanisms, gradually led 
to the creation of POF models. The concept of POF had been 
used for many years in the area of structural engineering, but in 
the early 90’s, reliability engineers adopted it for reliability 
assessment of electrical, electronic, and even mechanical 
systems and components in order to reduce the need to rely 
solely on historical failure data. POF models had a 
deterministic nature and they needed a separate stochastic 
process such as Monte Carlo-based simulations to make them 
probabilistic. [17]  

The POF models connect intra- (e.g. environmental 
temperature and pressure) and inter-environmental conditions 
(e.g. load, viscosity, and design specs) to “time-to-failure” 
using the scientific knowledge of degradation processes (e.g. 
fatigue generated crack initiation and propagation) and 
regression-based curve fitting to estimate the exponents in 
equations. PPOF [4] combines the scientific knowledge of 
degradation processes with the uncertainties (e.g. load profile 
applied to the item, its architecture, material properties and 
environmental conditions) to predict the time-to-failure of the 
item. Modarres [18, 19] developed a number of these 
probabilistic relationships for most common failure 
mechanisms at the material-level and used Bayesian updating 
(with test data or field data as evidence) to find the distributions 
of the parameters of time-to-failure, including probabilistic 
assessment of model errors. With this, the epistemic 
uncertainties associated with the deterministic POF models are 
accounted for and models are turned into probabilistic forms 
and ready to be used in current PRA frameworks.  

Although the Bayesian approach facilitates (a) more 
efficient considerations of uncertainties and (b) integration and 
updating with diverse sources of data (accelerated testing, field 
data, and expert judgment), dealing with the related 
multidimensional joint distributions has been quite challenging. 
With the advancement in computational tools in the 2000s, 
Bayesian statistical methods, such as the Markov Chain Monte 
Carlo (MCMC) Simulation and other sampling-based 
methodologies, have improved numerically and 
computationally, so that the Bayesian inference is becoming a 
common practice in PPOF. [20] 
Gaps to be considered in the PPOF analysis are: 
1. The methodology is developed for each individual failure 

mechanism and the interactions of failure mechanisms 
have not been considered.  

2. The methodology is developed at the material-level and 
has not yet been expanded to the component- or system-
level. An agent-based approach [17] is proposed but has 
not yet been validated. 

3. Since the parameters are the result of curve fitting in a 
specific condition (i.e. geometry and stress), the equations 
are not generic. 

3. PHYSICS-BASED CCF MODELING 
 

3.1. The concept of using probabilistic POF analysis to 
model CCFs  

Figure 1 shows a simple PRA framework where Event 
Tree (ET) delineates the possible risk or hazard scenarios. The 
events, conditions, and causes of the scenarios are incorporated 
through the Fault Tree (FT). In many cases, direct causes of 
accidents are those system failures or human operational errors 
that appear as the top events of FTs. The top events of FTs 
(e.g., System 1 in Figure 1) are plugged into the ETs. ETs 
represent a set of possible risk scenarios where, given the 
occurrence of the initiating event, the state of System 1 (a 
Pivotal Event), if it works, determines whether the sequence 
leads to success (End State S). If System 1 fails, then an 
operator action is required, and given the success of the 
operator action, the final outcome would be success (state S). 
Conversely, the failure of the operator action leads to failure 
(state F). The failure of System 1 relates to the failures of two 
components (i.e. A and B) which have two sub-components or 
parts (i.e. A1, A2, B1, and B2).  

Instead of dealing with dependencies using existing data-
driven CCF approaches (which use part- or sub-component 
level data), this paper proposes bringing the POFs into the risk 
model so that the sources of dependencies can be “explicitly” 
included. The simplest form would be in a case where each part 
has one failure mechanism. For example, consider two parts, 
A2 and B2, in a PRA model (as shown in Figure 1) where part 
A2 fails due to fatigue and part B2 fails due to wear. Because 
these two failure mechanisms share common intra- (e.g. 
environmental temperature and pressure) and inter-
environmental conditions (e.g. load, viscosity, and design 
specifications), parts A2 and B2 have dependent failures. Since 
the POF approaches explicitly include the intra- and inter-
environmental factors in the failure equations, the dependencies 
will be covered via the equations. The only challenge in dealing 
with the dependencies between A2 and B2 would be the 
expansion of the probabilistic POF models from material-level 
to component-level, and from component-level to system-level. 
Section 3.2 will explain the modeling challenges. 

A more realistic situation would be the case where two (or 
more) failure mechanisms interact. An example would be the 
dependencies between parts A1 and B2 in Figure 1, where the 
failure of A1 comes under both fatigue and wear and the failure 
of B2 comes under wear. In this case, there are two important 
challenges (1) modeling the interactions of fatigue and wear in 
A1 and (2) expanding POF models from the material-level to 
the system-level (as in the previous example). 
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In this paper, it is proposed that such problems are solvable 

using a mechanistic perspective (i.e. using semi-empirical 
models of failure mechanisms). This theoretical perspective 
would need appropriate “modeling techniques” to 
operationalize and quantify the interactions of failure 
mechanisms. The next section describes the challenges and 
methodological steps related to the proposed mechanistic 
perspective.  

 
3.2 Methodological steps for physics-based CCF modeling  

This section summarizes the proposed methodological 
steps of a mechanistic approach for CCF modeling. For 
clarification, consider parts A1 and B2 in Figure 1. As 
discussed in the previous section, these two parts have 
dependent failures since they share common inter- and intra- 
environmental factors as root causes of their failure 
mechanisms (i.e. fatigue and wear). If we develop models for 
their failure mechanisms (as functions of the inter- and intra- 
environmental factors) and, integrate them with the risk 
scenarios, we can accomplish a physics-based CCF failure 
modeling as the root causes of their dependency are explicitly 
included in the PRA. The following covers the methodological 
steps to achieve this goal. It also highlights the associated 
ongoing research by the authors: 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I. Developing a probabilistic wear model at the material-
level for B2:  we use the test data at the material-level for 
wear and find the parameters of this failure mechanism 
(by combining the deterministic science of mechanics of 
failure and regression- and/or Bayesian-based [20] curve 
fitting). This gives us “time-to- failure” as a function of 
stress and other inter- and intra-environmental factors. 
Using uncertainty propagation techniques and Bayesian 
updating, we estimate the probabilistic distribution of 
time-to-failure (this converts the deterministic POF 
models to probabilistic forms and makes them ready to be 
linked with PRA frameworks).  

In order to explain the methodology, we start with the 
development of a simplified probabilistic wear model for 
part B2 (e.g. a journal bearing) having vibration as its 
failure mode. Failure (i.e. vibration) happens when total 
damage (i.e. total wear; Wtotal [m]) reaches critical damage 
(i.e. wear critical; Wcritical [m]). Therefore, the number of 
cycles-to-failure (Nf-B2) can be estimated based on 
Equation 1. 

2

2

critical

f B

B

W
N

W

!

" #
$ %=
$ %
& '!

                                         (1) 

                                           

2BW!
 stands for wear rate [ m/cycle] of part B2 . 

 
It is assumed that the wear rate is a function of both 
“maximum shear stress in the vicinity of the contacting 
surface” (

1max! ) and “shear strength of the coating 

material at the test condition (
1yp! ). Therefore, the ratio 

of these two variables is the independent variable for the 
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wear rate model that is expressed as a power law function 
in Equation 2.  [17, 21] 
 

1

12

1max

1

B

n

yp

CW
!

!
=

" #
$ %
& '

!                            (2) 

 
C1 and n1 respectively stand for proportionality constant 
[m/cycle] and constant power parameter.   

 
Using Equation 1 and 2, the wear life of B2 can be related 
to the shear stress using the inverse power law 
relationship as described in Equation 3.  
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 K1 stands for a proportionality constant. In addition, τ1yp 
and τ1max can be estimated as functions of inter- and 
intra-environmental factors using Equations 4 to 8 . 
 
The maximum shear stress can be estimated based on the 

maximum shear stress theory in the vicinity of contact 
surface. As it is expressed in Equation 4, the maximum 
shear stress is a function of “normal stress on the surface 
resulting from pressure” (σ1n) and the “friction generated 
shear stress” (τ1f). The “stress concentration factor”               
(Ke1) may be significant when misalignment or other 
manufacturing errors are in place, and can be found in 
machine design handbooks for different geometry and 
materials. [21] 
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                              (4)  

As Equation 5 shows, the “friction generated shear stress” 
(τ1f ) is the multiplication of “normal load” ( LB2 ) and the 
“friction factor” (COF1 ).  
 

21 1 Bf COF L! = "                        (5) 

 
 The friction factor depends on the lubrication regime and 
is usually plotted versus the Sommerfeld number, as 
shown in the Equation 6 as a function of “lubricant 
viscosity” µ1, “lubricant velocity” V, and normal load for 
B2  
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Also, the shear strength of the coating material relates the 
temperature as shown in Equation 7 where A and B are 
constants and T1 stands for temperature of B2. 
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The “normal stress on the surface resulting from pressure” 
( σ1n ) is a function of the load and the geometry or design 
specification ( DE B2) in part B2.  
 

{ }
2 2

1
2

,n B B
f L DE! =               (8) 

 
By substituting  τ1yp and τ1mx from the Equations 4 to 8 
into the Equation 3, we can have a semi-empirical model 
of the cycles-to-failure (Nf-B2) as a function of intra- and 
inter-environmental factors and the two parameters of 
wear model (i.e. n1 and K1) . These two parameters would 
be the results of regression- and Bayesian-based curve 
fitting [20] using data (field data and accelerated life 
testing). Utilizing Bayesian updating, we can incorporate 
the uncertainly of the model parameters (n1 and K1) as 
shown in Equation 9.  

(9) 
 

( ) ( ) ( )
1 1 11 1 12 2

; , ,  | ; , ,   , ,L
f B f B

Data DataN n N n nK K K  ! !
" |  #  " $ "%%

 
   The term on the left side of Equation 9 stands for the 
“posterior joint distribution of the parameters (n1 and 
K1)”, and the first and second terms on the right are the 
“likelihood function of a set of data” and “the prior joint 
distribution of the wear model parameters” respectively. 
Having the posterior distribution of the model parameters 
(n1 and K1) from the Equation 9, we can develop a 
distribution of cycles-to-failure for part B2, which is        
π (Nf-B2). Therefore, the aforementioned equations link      
π (Nf-B2) to the intra- and inter- environmental factors.   

 
II. Applying a mechanistic approach to deterministically 

model the interactions of wear and fatigue mechanisms at 
the material-level for A1: at this step, we need to 
understand and model the deterministic phenomena of the 
interactions of wear and fatigue mechanisms leading to 
the failure mode (i.e. breakage due to crack) in part A1. 
There have been very few studies [e.g. 22] in fields other 
than risk analysis (e.g. Mechanical and Materials 
Engineering) to formally model the interactions of failure 
mechanisms. These studies applied the Finite Element 
(FE) method to depict the interactions (e.g. fatigue and 
wear). In short, the interaction phenomenon has been 
depicted using two approaches [22] : 
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a. Damage-based interaction model: In this approach, the 
FE wear model is initially run (for a number of cycles; 
ΔN) to estimate the effects of wear on geometry (and 
stress). Then, fatigue damage related to ΔN cycles is 
calculated using the stress-cycle fatigue relationship 
(the so-called S-N curve or more advanced 
relationships such as Smith-Watson-Topper parameter 
[23] and the damage accumulation rule [24]. In other 
words, in every time step of the model, the number of 
cycles-to-failure (Nf) associated to the level of stress 
(due to wear) is calculated using the stress-cycle 
fatigue relationship. Then, the fatigue damage related 
to this time step would be (ΔN / Nf). The cycles would 
repeat until the accumulation of damage reaches a 
specific failure criterion (associated with crucial 
crack). The total number of cycles (Σ ΔN) at that point 
would be the deterministic number of cycles-to-failure 
for a wear-fatigue mechanism.  

 
b. Crack-based interaction model: A more complete 

approach is based on explicit modeling of crack 
fracture mechanics. For this, the total cycles-to-failure 
is the summation of the “number of cycles-to-
nucleation of crack” (Nnu) and the “number of cycles-
to-propagation of the crack” (Np). The nucleation time 
can be simulated in the same manner as the approach 
explained in (a), with the damage accumulation 
threshold associated with the crack initiation size. The 
updated geometry and stress at the end of the 
nucleation cycles (from the FE nucleation module) are 
considered as inputs for the FE propagation module. In 
the FE propagation model, in each cycle, the damage 
due to failure mechanism #1 ( i.e. wear) is calculated 
and the finite element model is updated due to the 
change in geometry (due to wear) and the new 
distribution of stress and strength is found. This is then 
input into the equations of the failure mechanism #2 
(i.e. the well-known Paris law for the crack growth 
rate in fatigue [25]) to calculate the crack growth and, 
consequently, the change of geometry due to crack 
growth. The FE model would be updated again due to 
the change of geometry (due to crack growth). This 
loop continues through the cycles until total crack size 
reaches the critical stage, and, at that point, failure 
occurs. Again, the total number of cycles (Σ ΔN) at 
that point would be the deterministic number of 
cycles-to-failure for a wear-fatigue mechanism. 
 

In existing FE models, the interactions between failure 
mechanisms are primarily through the change in stress as 
the geometry (in the FE models) is updated in each cycle 
due to wear accumulation and crack growth. However, 
interactions stem from many sources. For example, due to 
damage in each cycle, temperature and viscosity will 
change, leading to an additional variation in stress and 
temperature. In order to fully complete step II of this 

methodology, it requires adding a module (including 
energy equations) to these models to update temperature 
(in addition to geometry) in each cycle.  

 
III. Developing the probabilistic model of the interactions of 

wear and fatigue mechanisms at the material-level for A1: 
In order to accomplish step III of the proposed 
methodology, the following stages are essential: 

 
• Currently, there are very few deterministic models (FE 

models) and no probabilistic models that consider the 
interactions of failure mechanisms. It is required to 
apply advanced uncertainty propagation methods 
(separating aleatory and epistemic uncertainty 
propagation and considering the uncertainties due to 
dynamic interactions of diverse equations and the 
variability of multiple parameters) and Bayesian 
updating approaches with the existing FE models to 
provide distributions of “cycle-to-failure”. This 
changes the existing deterministic POF models (of the 
interacting failure mechanisms) to PPOF models.  
 

• The existing FE models of the interactions of failure 
mechanisms have been developed assuming constant 
parameters in the failure equations (e.g. constants in 
Paris law equation) even though geometry and stress 
changes with each cycle. This can be improved by (1) 
using a large number of test data to find a proper 
“distribution” of the parameters. Using the distribution 
and utilizing uncertainty propagation methods, we can 
then reduce the effects of “approximation” on the 
parameters and establish a more realistic PPOF model 
for each individual failure mechanism and/or (2) at 
least considering different parameters for different 
ranges of geometry and stress. 
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Figure 2 Causal modeling approach for a physics -based CCF modeling
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• Another stage, related to Step III of the methodology, is 
the exploration of possibilities and benefits of using 
other “modeling techniques” (other than FE or a hybrid   
integration of FE with other modeling techniques) in 
order to operationalize the mechanistic perspective of 
the interactions of failure mechanisms. Casual 
modeling techniques (e.g. Bayesian Belief Network 
(BBN) [23] or a combination of FE with BBN) are 
proposed as potential candidates since (1) they have 
been easily linked to FT/ET in PRA (as it will be 
explained in step IV) and (2) they are useful in tracking 
the sources of dependencies in CCFs, and (3) they can 
be built and expanded as probabilistic nets.  
To articulate the causal modeling approach for a 

physics-based CCF modeling, Figure 2 shows a 
preliminary causal model for failure mechanisms of two 
parts, A1 and B2, from Figure 1.  The target nodes of 
these causal models are the distributions of cycles-to-
failures for B2 (π (Nf-B2)) and A1 π (Nf-A1)). As Figure 2 
shows, the causal model for B2 connects the target node 
π (NB2) to its immediate inflecting factors (i.e. c1,τ1max, 
τ1yp, n1 ) used in the Equation 2. The next layers of 
causal factors are also built based on Euations 4 to 8. 
The only causal relation that is not included in these 
equations, but is added to the model ( Figure 2), is the 
physical relation of T1 on µ1  . 
In order to build the causal model for the failure of 

component A1, the symbolic functional relationships  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
are developed based on the deterministic phenomenon 
of the interactions of fatigue and wear in the 
aforementioned FE approach. For example, based on 
approach (a) in Step II, the number of cycles-to-failure 
for A1 can be expressed using the so-called S-N curve 
model as follows: 
 

21

21

n

N Kf A
S

=!
" #
$ %
& '

                                      (10) 

Where K2 , S, n2  stand for the proportionality constant, 
the stress amplitude, the power parameter respectively.  
 
Since stress in this interaction approach is due to the 
accumulation of wear over time and the cyclic load, it 
can be shown as: 
 

( ) ( )
1 1 113

, ,
A A f AA

S gf NL DEW !
= "# !              (11)  

 
Where 

1 11
, ,

A AAL DEW! !   stand for load amplitude, 
wear rate, and design specification in Part A1.  
g and f3 are functions based on the FE model of the 
interactions of fatigue and wear (considering approach 
(a) in Step II). By combining Equations 11 and 10, we 
would have the following relationships for   Nf-A1: 
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                                                                  (13) 
 
The left side of Figure 2 shows the causal model of the 
distribution of number of cycles-to-failure for A1 (i.e.       
π (Nf-A1)), which is built based on the Equations 10 to 13. 
H and f3 are functions based on the FE model of the 
interactions of fatigue and wear (considering approach (a) 
in Step II). Also, the causal model for 

1AW!  is developed 
using the Equations similar to 2  to 8. 
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As the figure shows, there are three types of factors in the 
causal models of A1 and B2: (1) the independent factors 
(e.g. Ke1 and Ke2 ), (2) the common factors (e.g. Source 
Load and V), and (3) different factors but dependent (e.g. 
T1 and T2 ) . The CCFs can happen due to the existence of 
root causes of type 2 and/or type 3 in the causal model.  
 
Figure 2 is based on approach (a) of the interaction, but it 
is also possible to develop the symbolic functional 
relationships for approach (b) in Step II, which is a crack-
based FE model of the interactions, and develop the 
causal model based on it.  
 

IV. Expanding material-level models to component-level 
(using the FE method) and also finding an appropriate 
modeling technique to link the FE component-level 
models to the system-level:  There is a need for a 
technique that can store and update the resulting data 
from FE models in the component-level POF and transfer 
them to system-level. The system-level modeling would 
be challenging due to the diversity of components and the 
interactions of their failure mechanisms. Azarkhail [17] 
has suggested an agent-based computing approach as a 
promising technique for this.  We propose using a hybrid 
modeling approach for this step of the methodology. This 
means keeping Fault Tree (FT) and Event Tree (ET) 
methods at the higher level of system analysis, and 
linking the probabilistic models of physical failure 
mechanisms (e.g. probabilistic FE and/or other potential 
causal models as explained in step III) of the lower-level 
parts, as modules, to the system-level FTs/ETs in PRA. 
This approach would be similar to the hybrid method that 
Mohaghegh et al. [8] utilized for incorporating human 
and organizational factors to PRA. They used the System 
Dynamics (SD) [24] and the Bayesian Belief Network 
(BBN) approaches for modeling the underlying human 
and organizational failure mechanisms, and integrated 
them with FT /ET scenarios of the risk model.  

4. SUMMARY AND CONCLUSION 
One of the most important topics in Probabilistic Risk 

Assessment (PRA) is modeling dependent failures. In 
general, dependent failures are defined as events in which the 
probability of each failure depends on the occurrence of other 
failures. The major causes of dependence among a set of 
systems or components (or parts) can be explicitly modeled 
using system reliability methods (e.g. Fault Trees). Other 
dependent failures, where root causes are not known or are 
difficult to model explicitly in the system or component 
reliability analysis, are grouped under Common Cause 
Failures (CCFs).  

This research leads to a shift of paradigm in the assessment 
of CCFs. Instead of utilizing existing data-driven approaches, 
this paper proposes the concept of physics-based CCF 
modeling which refers to incorporating underlying physical 
failure mechanisms into risk models so that the root causes of 

dependency can be “explicitly” included. This requires 
building a theoretical foundation for the integration of PPOF 
models into PRA in a way that can depict the interactions of 
failure mechanisms and, ultimately, the dependencies 
between the component failures. To achieve this goal, the 
following methodological steps are highlighted:  
 
1. Probabilistic modeling of the individual failure 

mechanisms (e.g. fatigue and wear) of two dependent 
components at the material-level. 

2. Modeling the deterministic phenomena of failures (at the 
material-level) due to the interactions of two failure 
mechanisms (e.g. fatigue and wear). It is proposed that 
this theoretical foundation can be developed based on a 
mechanistic perspective (i.e. using semi-empirical 
models of failure mechanisms). 

3. Utilizing advanced uncertainty characterization and 
propagation methods (probabilistic assessment of model 
errors, aleatory and epistemic uncertainty modeling 
considering the dynamic interactions of diverse 
equations and a large number of parameters) and 
Bayesian approach to make the deterministic models of 
interactions (developed in step 2) probabilistic and ready 
to be linked with the PRA frameworks. 

4. Expanding material-level PPOF models to the 
component-level in order to create physics-based CCF 
models and developing appropriate modeling techniques 
to link the physics-based CCF models (at the 
component-level) to the system-level PRA. 

 
In general, some of the applications and advantages of this 

research include the abilities to:  
 

• Incorporate operational and environmental conditions 
in hardware failure models 

• Model aging and degradation processes 
• Model CCFs in PRAs of operating plants  
• Model CCFs in PRAs of plants in design stages  
• Use retrospective assessments intended to estimate the 

risk significance of single or multiple equipment 
failures (degradation) accompanied by a deficiency in 
design, operating conditions, and/or a process such as 
scheduling maintenance (the so-called Significant 
Determination Process by the U.S. Nuclear Regulatory 
Commission  Inspectors) 

• Schedule optimum maintenance intervals based on 
more realistic estimates of time to failure (and, 
ultimately, reduce maintenance costs)  

• Facilitate the connection between POF models and CCF 
models and the harsh, post-accident environment in a 
nuclear power plant (using common physical variables)  

• Facilitate the connection between CCF models and the 
thermo-hydraulic and other mechanistic codes (e.g. 
reactor vessel and other reactor structure neutron 
embrittlement) using common physical variables, which 
would facilitate the development of accident simulators  
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• Track the condition of individual component and 
structures to assess their reliability, given their design 
characteristics, history and operational experience  

• Extend the notion of dependence beyond identical and 
redundant components into diverse components and 
applications. This research also forms a formal basis for 
the assessment of passive system reliability for 
advanced reactor concepts, and the inclusion of 
structure (piping, steam generator tubes, etc.) failures in 
advanced nuclear installation PRAs. 

• Model common causes among group of components 
such as all motor operated valves in a power plant 

 
In addition to contribution to PRA, this line of research will 
also make a scientific contribution to other engineering 
domains, as it will build a foundation on which to model the 
interactions of two different failure mechanisms. There are 
limited studies that have tried to consider the interactions of 
two failure mechanisms but they have been based on significant 
simplifications. Researchers have not adequately considered the 
interactions of failure mechanisms since the consequences can 
be ignored in designs with large safety margins. However, as 
system design becomes more energy efficient and time-to-
obsolescence is shortening, the need for this type of research 
will be critical.  
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