## Flexible Displays With Nanostructured Integrated Power Sources

M.Peckerar<sup>(2)</sup>, and

Aris Christou<sup>(1,3)</sup>,

 <sup>(1)</sup>Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
 <sup>(2)</sup>Dept. Electrical Engineering, University of Maryland, College Park, Maryland 20742, USA
 <sup>(3)</sup> Dept. of Mechanical Engineering, College Park, Maryland 20742, USA

#### Applications for Flexible Hybrid Electronics

♦Energy

- Photovoltaics
- Solid-State Lighting
- Batteries

♦Electronics

- Displays
- e-Paper
- Sensors & Actuators

 $\diamond \mathsf{Biomedical}$  and  $\mathsf{Healthcare}$ 

♦Communications -RFID ♦Defense

## Motivation for Flexible Electronics





## Most Promising Fabrication Methods

#### Fabrication methods for Flexible Electronics

- Photolithography
- Ink-jet printing
- Gravure
- Flexography
- Screen Printing
- Contact Printing / Soft Lithography
- Nano-Imprinting / Transfer Printing
- Laser-based approaches
- Roll-to-Roll

## Transfer Printing

Photolithography with LT Processing









**Relies on Differential Adhesion:** 

Printable Layer must be more adhesive to Device Substrate than to Transfer Substrate

## Successful Implementation of Transfer Printing



D. R. Hines et. al., Proc. SPIE 6658, 66580Y (2007)





## **Transfer Printing Requirements**



## **Transfer Printing Issues**



#### High Adhesion between Printable Layer & Device Substrate

Low Adhesion between Transfer & Device Substrates

## Transfer Printing Optimization of Electrode Sub-Assemblies

- Higher Pressure & Temperature can Alleviate Stress Flow pattern
- But will Increase Adhesion between Transfer & Device Substrates.



Apply Self-Assembled Monolayers (SAM) to Decrease Adhesion between Transfer & Device Substrates

1. First Protect Au surface w/ BenzeneThiol SAM.

- 2. Then Apply Release Layer to Si Transfer Substrate. (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane SAM
- 3. This allows Higher Temperature & Pressure for Printing Electrodes. (500 psi & 170 °C for 3 min.)

#### **Transfer Printing (TP):**

- ⇒ Simple & Robust
- ➡ No Mixed Processing on Device Substrate
- ➡ No Chemicals used on Device Substrate
- ⇒ Compatible w/ Wide Variety of Materials (both Organic & Inorganic)
- ⇒ Scalable to larger area & roll-to-roll Processing

#### TP has been used to Fabricate:

| Transistors | Inductors    |  |  |
|-------------|--------------|--|--|
| Resistors   | Transformers |  |  |

Capacitors

Inverters

Vertical Interconnects

High Quality Devices On Plastic ! with Low Contact Resistance can use Many Different Materials

Mechanical Resonators

## Second Fabrication Technology For Flexible Electronics

- Photolithography: Flexible polymer attached to a silicon carrier substrate (CS).
- Apply traditional processes but at low temperatures.
- Our work is in the area of flexible displays.

## **Flexible Displays**



#### Failure: Lineouts due to cyclical deformation

#### Outline

Flexible displays
 Previous work: Flexible
 Substrates and Identification of
 Problems
 Experimental Results:
 Performance and Reliability
 Conclusions



## Display Operation Pixel: TFT and Electro-Optical Material



## Key technological Challenges



# Experimental Approach inorder to resolve the issues

- Process Science and Cell Development with Test Wafer.
- Mechanics of films on flexible substrates
- Specifics of a-Si TFTs
- Metal conductors on a-Si TFTs and power supply for the array.
- Interlayer effects
- Reduction of stress
- Modeling stress effects





#### Low Temp a-Si Process Challenges, Substrate Challenges

#### **Background and Motivation**

► Impact of Fabrication process on Performance and Reliability.

► 3D Integration of a thin film power cell for tft self bias.

Stress build up in hydrogenated amorphous silicon thin film transistors on a flexible substrate

Impact of stresses film delamination cracking / spalling permanent curvature/ warpage of the substrate



## **On-Substrate Power Source Technology**

- Cathode: Mixture of hydrated ruthenium oxide and activated carbon nanoparticles
- Anode: Oxidizing metal (zinc, aluminum...)
- Capped Electrolyte: Weakly acidic and high viscosity polymer.
- Provisional patents:
  - "Technique for Improving the 'Super-Capacitance' of Ruthenium Oxide Based Capacitors"
  - "A Flexible, High Specific Energy Density, Rechargeable Battery"





-Zinc

Contact

Flex Substrate

Carbon+RuO2

## The Basic Redox Reaction

**Ruthenium reduced at the cathode**  $RuO_2 + 2H^+ + 2e^- Ru(OH)_2$ Via a surface reaction:

Zinc oxidized at the anode:  $Zn \longrightarrow Zn^{++} + 2e^{-}$ 

The cathode reaction is purely a surface reaction: No dissolution of ruthenium occurs



 $RuO_2$ -nH<sub>2</sub>O Nanoparticles, which decorate activated carbon with a binder (about 500nm diameter)

The hydrate,  $RuO_2 - nH_2O$ , is a mixed protonelectron conductor, which can generate an ultrahigh pseudocapacitance. Cross Section of the single sheet Zn-RuO<sub>2</sub>-nH<sub>2</sub>O galvanic cell: 1-Zn electrode, 2: RuO<sub>2</sub>-nH<sub>2</sub>O/activated carbon cathode, 2a-Adhesion layer containing RuOxide nanoparticles, 2b-Graphite film, current collector, 3separator, 4-packaging substrate



#### **TFT Device Performance**



| Parameter           | Silicon                   | HS-PEN                    | Stainless Steel           |
|---------------------|---------------------------|---------------------------|---------------------------|
| Saturation Mobility | 0.3 cm <sup>2</sup> /V-s  | 0.11 cm <sup>2</sup> /V-s | 0.20 cm <sup>2</sup> /V-s |
| ON/OFF Ratio        | 3 x 10 <sup>7</sup>       | 5 x 10 <sup>7</sup>       | 2 x 10 <sup>6</sup>       |
| Leakage current     | 3.3 x 10 <sup>-13</sup> A | 2.8 x 10 <sup>-13</sup> A | 4.9 x 10 <sup>-12</sup> A |
| Threshold Voltage   | 3.00 V                    | 3.68 V                    | 4.09 V                    |

#### **Electrical Measurements: As Processed**



Drive current across entire array 

300

#### Stress Effects / Distortion: Measured During processing and after thermal degradation, As Processed, 100, 1000 Cycles, 1 hr Period (PEN Substrate)



## Effect of Strain on Mobility of a-Si TFTs

- Mobility vs strain, AT=85C, 100hrs, total, 100 cycles.
- Mobility vs gate orientation
- Performance restored once strain is removed.

Mechanics of films on flexible substrates:

Temperature Cycling  $\Delta T=85C$ , 1 hour Periods

 crack networks formed in SiOx coatings on polymer substrates
 PECVD SiOx coatings on PEN substrates
 Failure mode:cracking/ channeling and debonding.





# Summary of Effects of strain on TFTs



- Response: elastic deformation -> dielectric fracture
- Electrical function restored once strain is removed
- Compressive strain mobility reduced
- Tensile strain mobility increased

## Modeling the Mechanical Response

- Internally induced forces
  - Stress from fabrication, Thermal stress, Humidity stress
- Behavior of film/substrate
  - Elastic modulus
  - Thickness of film (d<sub>f</sub>), Thickness of substrate (d<sub>s</sub>)

#### <u>Strain: built-in and total</u>

```
\begin{split} & \epsilon_{M} = \epsilon_{0} + \epsilon_{th} + \epsilon_{ch} \\ & \epsilon_{M} \text{ (total mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch in strain)} \\ & \epsilon_{0} \text{ (built in mismatch
```

#### <u>Built in Strain</u>

```
\cdot \epsilon_0 built in during film growth
```

```
Atoms deposited in non-euqilibrium
positions
When deposited on compliant
substrate - can produce strong
curvature
Function of RF power during
deposition (PECVD)
```

#### <u>Determining built in strain & stress</u>

Extracted from radius of curvature Measure R Determine  $\varepsilon_M$  from previous equation  $\varepsilon_M = \varepsilon_0 + \varepsilon_{th} + \varepsilon_{ch}$ Subtract  $\varepsilon_{th}$  and  $\varepsilon_{ch}$ Left with  $\varepsilon_0$ Then calculate built in film stress  $\sigma_{f0} = [Y_f * Y s^* d_s / (Y_f * d_f + Y_s * d_s)] \times \varepsilon_0$ 

- Pre-existing cracks cause crack propagation
- Condition for crack formation under tension
- Films crack more easily when thickness increased
- F specific surface energy
- χ depends on elastic constants of film and substrate

#### Film/substrate under compression



$$I_{c} = \frac{\pi d_{film}}{\sqrt{3(1 - \upsilon_{film}^{2})}} \sqrt{\frac{\mathbf{Y}_{film}}{\sigma_{film}}}$$

#### Film/substrate under tension



#### Effect of substrates

- Film will conform to the substrate
- Biaxial stress arises in plane of film
- Correlation to mismatch strain

•  $\sigma_f = \epsilon_M Y_f^* Y_f^* \epsilon_M$  is the biaxial elastic modulus of film

- Substrate bend with a radius
  - R = Y<sub>s</sub>\*d<sup>2</sup><sub>s</sub> / 6o<sub>f</sub>d<sub>f</sub>, Stress is determined by measuring radius R Compliant substrates

Substrate also deforms - stress in film reduced
If held rigid during fabrication, stress defined as:
σ<sub>f</sub> = ε<sub>M</sub> Y<sub>f</sub>\*/ (1 + Y<sub>f</sub>\*d<sub>f</sub> /Y<sub>s</sub>\*d<sub>s</sub>)
σ<sub>s</sub> = -σ<sub>f</sub> d<sub>f</sub> /d<sub>s</sub>
When carrier is removed, has radius of curvature:
R = [(Y<sub>s</sub>d<sup>2</sup><sub>s</sub> - Y<sup>f</sup>d<sup>2</sup><sub>f</sub>)<sup>2</sup> + 4Y<sub>f</sub>Y<sub>s</sub>d<sub>f</sub>d<sub>s</sub>(d<sub>f</sub> + d<sub>s</sub>)<sup>2</sup>] / [6ε<sub>M</sub>Y<sub>f</sub>Y<sub>s</sub>d<sub>f</sub>d<sub>s</sub>(d<sub>f</sub> + d<sub>s</sub>)]
Y = plane strain elastic modulus

## Summary

- General approach: Physics of Failure Approach: Mechanical Strain Limits Determined.
- Results of Present Investigation
  - PEN and to be extended to stainless steel
  - Internal stress from fabrication
  - External stress from life testing
    - Power applied
    - Elevated temperature
- Potential problems: Mainly Mechanical

## **Reliability?**

# Cyclical Stressing of the substrate results in the main cause of failure.

- Design and integrate a test system to capture time to failure data of thin film interconnects deposited on flexible substrates
- Develop a model to predict cycles to failure based on flexing a
- 28 substrate to a set radius of curvature.





# Conclusions

- Cyclical Mechanical stress imposed on gate line interconnects root cause of reliability limitations of flexible displays
- Test system designed to capture TTF of interconnects traces subjected to stress
- Life-stress model has been developed to predict reliability of display bent to a set radius of curvature. Fatigue curves developed.

Acknowledgements: Industrial Funding (L-3 Communications and The Display Consortium)

# Future Work

- Different materials
  - Carbon nanotubes
  - Organic materials
- Device geometry (interconnect traces)
  - Accordion
  - Serpentine
- Fabrication process conditions (lower temp)
   Different processes techniques: Transfer Printing.



- Thomas Martin: Phd Student
- The ASU display group and the Federal Display Center for wafer processing.
- Army Research Lab, and the NSF.
- Professors Tang Li, Neil Goldstein of UMD, for their interest in the problem.
- M. Hines for his work in the area of Transfer Printing technology.