Failure Modes, Effects and Criticality Analysis and Accelerated Life testing of LEDs for Medical applications

M. Sawant and *A. Christou* University of Maryland College Park MD.

Agenda

- 1. Medical Diagnostic Application for LEDs
- 2. Failure Modes and Effects Criticality Analysis (FMECA)
- Failure Modes & Mechanisms of AlGaInP/GaP LEDs
- Initial FMECA Analysis (Before Accelerated Life Test)
- Residual FMECA Analysis (After Accelerated Life Test)
- 3. Accelerated Life Testing (ALT) of AlGaInP/GaP LEDs
- Inverse Power Law Model for High Current & Arrhenius Model for High Temperature Aging
- Logarithmic Degradation Rate modeling
- Optical Power vs. Vf performance during ALT
- Peak wavelength & Full Width Half Max (FWHM) during ALT
- 4. Regression Analysis of Prior Publ.Data for AlGaInP/GaP LEDs
- 5. Conclusions.

Medical Diagnostic Application for LEDs

Generic AlGaInP/GaP LED structure & fab. process

AlGaInP/GaP chip fabrication process, Vanderwater et al [6]

Failure Modes/Mechanisms AlGaInP/GaP LEDs

Failure Modes & Effects Criticality Analysis

Severity Classification for Medical Diagnostic Application

Level	Rating	Description for Medical Diagnostic Instrument
Catostrophic	1	Inaccurate analytical result,
		Erroneous But Believable (EBB) result
		May lead to death of patient or user or
		Serious deterioration in their state of health
Critical	2	Incorrect diagnosis or use of less effective or inappropriate treatment
Marginal	3	Possible Erroneous But Believable (EBB) result,
		Test is used in conjunction with other diagnostic information.
Minor	4	Delayed or no medical test result,
		Incorrect result causing no difference in diagnosis or no inappropriate treatment,
		Incorrect result requiring reflex or confirmatory testing.
None	5	

FMECA continued

occurrence								
Level	Rating	Description						
Frequent	1	A single failure mode probability > 20% of overall component failure probability						
		A single failure mode probability > 10% and < 20% of overall component failure						
Resonably Probable	2	probability						
		A single failure mode probability > 1% and < 10% of overall component failure						
Occassional	3	probability						
		A single failure mode probability > 0.1% and < 1% of overall component failure						
Remote	4	probability						
Extremely Unlikely	5	A single failure mode probability < 0.1% of overall component failure probability						

Occurrence Classification

Failure mode criticality number

- C_m =βαλT
 - β Failure Effect Probability
 - α Failure Mode Ratio
 - λ Failure Rate
 - T Operating Time

FMECA Initial (Before Accelerated Life Test)

Sr.#	Failure Modes/Mech anisms	Causes	Local Effects at LED level	System Effects in Medical equipment	Seve rity	Failure Effect Probability (ß)	Failure Mode Ratio (a)	Failure Rate	Operating Time (T) in hrs	Criticality #
1	Packaging failure (Heat Sink)	Heat sink de-lamination	- Decrease of optical output - Local heating effects	- Unscheduled module replacement - Delayed medical test results	3	0.4	0.3	1.8E-11	31500	6.7E-08
2	Degradation of plastic encapsulation	 Discoloration Carbonization Polymer degradation at high temperature 	- Gradual decrease of optical output	- Excessive drift requires unscheduled calibration - Delayed medical test results	3	0.4	0.2	1.8E-11	31500	4.5E-08
3	Degradation of ITO layer	- Loss of Oxygen from ITO - De-adhesion	- Decrease of optical output - Non-uniform light emission	 Unscheduled module replacement Delayed medical test results 	4	0.3	0.1	1.8E-11	31500	1.7E-08
4	Packaging failure (Bond Wires)	 Electro-migration of bond wires Burnout due to excessive current Void formation at the solder metal stem Reaction of solder metal with package electrodes 	- Abrupt LED failure	 Unscheduled module replacement Delayed medical test results 	4	0.9	0.1	1.8E-11	31500	5.0E-08
5	Degradation of active layer	 Dislocation growth Metal diffusion in AlGaInP Heating effects of AlGaInP active region resulting in enhanced current injection 	- Gradual decrease of optical output	- Excessive drift requires unscheduled calibration - Delayed medical test results	4	0.4	0.4	1.8E-11	31500	9.0E-08
6	Degradation of P-N metal contacts	- Interdiffusion	- Change in IV characteristics	- Design will accommodate minor changes in IV characteristics	5	0.4	0.2	1.8E-11	31500	4.5E-08
									18	56

ARYLA

Accelerated Life Test Setup

Setup for LED Characterization

Fig. 2.3.3 Setup for LED Characterization

Accelerated Life Test Conditions

Inverse Power Law Modeling: Current Density

The inverse power law relation ship is given as

$$TTF = A.J^{-n}$$
 (1)

Where TTF=Time to failure in hrs, J=LED Current density in Amps/sq², A & n are +ve constants

Taking Ln on both sides,

$$Ln(TTF) = LnA - nLn.J$$
-(2)

This gives a straight line relationship where '-n' is the slope, LnJ is the accelerating variable and LnA is the y-intercept. The negative slope implies that as the current density increases, the TTF decreases.

Arrhenius Reaction Rate Modeling: Temperature

Arrhenius reaction rate model is $Rate = Be^{-\left(\frac{Ea}{KT}\right)}$ - (3)

Where T=Temperature in °K, Ea=Activation energy of the LED degradation, K=Boltzmann's constant, B is another constant.

Taking reciprocal of the 'rate' to get 'time' $TTF = Ce^{\left(\frac{Ea}{KT}\right)}$ - (4)

Where TTF=Time to failure in hrs, C=1/B is another constant. Taking Ln, $Ln(TTF) = LnC + \frac{Ea}{KT}$ - (5)

A straight line relationship where 'Ea/K' as slope and LnC is the y-intercept. For graphing convenience, we use 'Ea' as slope and 1/KT as the accelerating variable. As temperature increases, 1/KT decreases and the TTF also decreases.

Acceleration Factor Computation

Acceleration Factor for Inverse Power Law Model is given by

$$AF_{1} = \frac{TTF_{Use}}{TTF_{Acc}} = \left(\frac{J_{Acc}}{J_{Use}}\right)^{n} - (6)$$

Acceleration Factor for Arrhenius Reaction Rate Model is given by

$$AF_{2} = \frac{TTF_{Use}}{TTF_{Acc}} = e^{\frac{Ea}{K} \left(\frac{1}{T_{Use}} - \frac{1}{T_{Acc}}\right)} - (7)$$

Assume Ea & convert all TTF data to use Temperature T to estimate 'n' Take n above & convert all TTF data to use current density J to estimate 'Ea'. Repeat using Iterative Regression Analysis to estimate 'Ea' and 'n'.

Overall Acceleration Factor is given by

$$AF = AF_1 x AF_2 = \left(\frac{J_{Acc}}{J_{Use}}\right)^n e^{\frac{Ea}{K}\left(\frac{1}{T_{Use}} - \frac{1}{T_{Acc}}\right)} - (8) \int_{18}^{18} e^{\frac{1}{K}\left(\frac{1}{T_{Use}} - \frac{1}{T_{Acc}}\right)}$$

Accelerated Life Test Data - Batch2

Accelerated Life Test Data - Batch3

Logarithmic degradation: Time To Failure Prediction

Spectrometer Characterization 640nm LEDs

Accelerated Life Test: LED Photos

ARYLAND SE

Chip (Vf) Vs LENs degradation

Optical vs Vf performance 640nm LEDs

Accelerated Life Test: Spectrum change

Before Accelerated Life Test After Accelerated Life Test

Initial Spectrometer Characterization 640nm LEDs Batch2

Final Spectrometer Characterization 640nm LEDs Batch2

Accelerated Life Test: Peak Shift & narrow FWHM

Results of Accelerated Life Test Batch2

	_	TTF hrs			Act.	TTF hrs				% Drop @	% Drop @
	C	Observed	мтте	ACC	Energy	Estimated 20%	Equation for Logarithmic	LENS	vt increase	630nm rei	to 640nm
001	Ŭ	20 /8 degru		I actor	ev	uegru	v = -1.45371 n(x) + 90.86	Minor	/0	10 0401111	10 0401111
640x1-21	35	Suspend	3457.9			1755.6	R2 = 0.8617	Surface	4.0	3.2	-0.2
							y = -2.8548Ln(x) + 96.606	Minor			
640x1-22	35	Suspend				335.9	R2 = 0.9119	Few Bubbles	4.6	4.4	0.4
							y = -1.4323Ln(x) + 92.922	Minor			
640x1-23	35	Suspend				8282.1	R2 = 0.9367	Surface	6.5	4.6	1.0
							y = -1.1962Ln(x) + 93.075	Moderate			
640x1-24	35	Suspend				55851.2	$R^2 = 0.9523$	Edge of globe	7.1 -> 5.2	4.7	1.0
							y = -0.8057Ln(x) + 95.326	Moderate			
640x1-25	35	Suspend				1.8E+08	R2 = 0.8927	Surface	4.9	3.5	2.6
							y = -1.5697Ln(x) + 88.277	Moderate			
640x1-26	55	207.9	201.9	17.1	1.24	195.0	R2 = 0.9025	Surface	2.9	5.2	9.6
0.4.0 4.07		4.5					y = -4.3842Ln(x) + 73.933	Moderate	70.04	4.0	0.4
640x1-27	55	1.5				0.3	R2 = 0.9732	Surface	7.9 -> 6.4	4.9	2.1
640×1.29	55	44.7				20.7	y = -1.9411Ln(x) + 87.094	Minor Fow Rubbles	7 5	E C	0.9
04021-20	55	41.7				30.7	$R_2 = 0.9004$ y = -1.4315l p(y) + 90.179	Few Buddles	7.5	5.0	0.8
640×1 20	55	Sugnand				1225.0	$p^2 = 0.0525$	Minor Fow Rubbles	2.5	20	12.5
04021-29	- 55	Suspenu				1225.0	R = 0.9555	Nipor	2.0	3.0	12.0
640x1-30	55	Suspend				9 7F+17	P = 0.4203 EII(x) + 97.743	Few Bubbles	45	03	0.0
0-10/1 00	00	Ouspend				0.72.11	v = -3.2403Ln(x) + 81.238	Moderate	+.0	0.0	0.0
640x1-31	75	4 4	48.8	70.8	0.98	15	$R^2 = 0.9684$	Surface+Bubles	3.6	6.0	26
	10		10.0	10.0	0.00	1.0	y = -2.748Ln(x) + 83.18	Minor	0.0	0.0	2.0
640x1-32	75	4 4				32	$R^2 = 0.9754$	Few Bubbles	117->70	6 1	32
010/11/02	10					0.2	y = -1.8618Ln(x) + 89.002	Minor Very Few	1111 110	0.1	0.2
640x1-33	75	85.3				125.9	$R^2 = 0.9464$	Bubbles	8.8	4 1	23
						.20.0	y = -4.6769Ln(x) + 71.53	Severe	0.0		
640x1-34	75	1.5				0.2	$R^2 = 0.9691$	Surface	8.6 -> 4.5	4.6	3.5
		1.0				0.2	y = -1.9047 Ln(x) + 89.011	Minor			0.0
640x1-35	75	85.3				113.4	R2 = 0.9633	Few Bubbles	11.5 -> 7.8	4.2	4.1

Results of Accelerated Life Test Batch3

	Temp	TTF hrs Observed		Acc	Act. Energy	TTF hrs Estimated 20%	Equation for Logarithmic	LENs	Vf Increase	% Drop @ 630nm rel	% Drop @ 650nm rel
UUT	C	20% degrd	MTTF	Factor	eV	degrd	degradation model	degradation	%	to 640nm	to 640nm
							y = -0.5742Ln(x) + 102.46	Moderate			
640x1-41	35	Suspend	175.2			9.7E+16	R2 = 0.7083	Surface	-0.8	1.1	1.5
							y = -0.3873Ln(x) + 100.22	Minor			
640x1-42	35	Suspend				4.7E+22	R2 = 0.7377	Surface	-1.6	1.8	4.4
							y = -2.339Ln(x) + 93.465	Moderate			
640x1-43	35	208.1				316.3	R2 = 0.9704	Bubles	8.6	5.0	-0.8
							y = -2.5448Ln(x) + 88.985	Minor			
640x1-44	35	35.3				34.1	R2 = 0.8966	Surface	5.6	5.7	0.0
							y = -0.4472Ln(x) + 100.42	Severe			
640x1-45	35	Suspend				6.8E+19	R2 = 0.7487	Surface Scratch	0.3	2.0	3.4
							y = -0.6064Ln(x) + 102.43	Moderate			
640x1-46	55	Suspend	6.0	29.2	1.47	1.2E+16	R2 = 0.8948	Surface	-0.9	0.9	2.7
							y = -0.7681Ln(x) + 100.51	Minor			
640x1-47	55	Suspend				4.0E+11	R2 = 0.9481	Surface	-1.6	1.2	1.7
							y = -0.6449Ln(x) + 101.1	Moderate			
640x1-48	55	Suspend				1.6E+14	R2 = 0.8551	Surface	-1.6	1.2	1.6
040 4 40		7.0					y = -2.7834Ln(x) + 84.99	Minor	7.5		
640x1-49	55	7.8				6.0	R2 = 0.9781	Surface	7.5	6.6	0.0
040 4 50		0				0.05.40	y = -0.7512Ln(x) + 103.5	Minor		4 5	
640X1-50	55	Suspend				3.9E+13	R2 = 0.8257	Surface	-2.2	1.5	-0.9
040.4 54	75		0.7	47.0	0.00		y = -2.8983Ln(x) + 83.881	IVIINOF Ourfood	7.5	<u> </u>	0.4
640X1-51	75	4.4	3.7	47.9	0.89	3.8	$R_2 = 0.9886$	Surface	C. 1	0.8	0.1
0 4 0 4 5 0							y = -5.7886Ln(x) + 68.472	Ninor		0.5	
640x1-52	/5	0.3				0.1	R2 = 0.986	Surface	6.6	6.5	0.0
040.4 50	75	Our and				2 05 47	y = -0.5841Ln(x) + 103.66	News	4.0	1.0	0.7
640X1-53	75	Suspend				3.9E+17	$K_2 = 0.9172$	None	-1.6	1.0	2.7
640-4 54	75	Quantizat				2 45 47	y = -0.5618Ln(x) + 102.68	IVIINOr Surface	0.0	0.0	1.0
04UX1-54	75	Suspend				3.4⊑+17	KZ = 0.908Z	Sufface	-2.3	0.2	1.9
640v1 EE	75	7.0				7.0	y = -2.7550LII(X) + 65.305	Surface	10.1	6.2	0.5
04UX1-00	15	7.8				7.0	nz - 0.9092	SuildCe	10.1	0.2	0.5

Regression Analysis of Published Data: AlGaInP

Regression Analysis of Published Data: GaN

FMECA Initial (Before Accelerated Life Test)

Sr.#	Failure Modes/Mech anisms	Causes	Local Effects at LED level	System Effects in Medical equipment	Seve rity	Failure Effect Probability (ß)	Failure Mode Ratio (a)	Failure Rate	Operating Time (T) in hrs	Criticality #
1	Packaging failure (Heat Sink)	Heat sink de-lamination	- Decrease of optical output - Local heating effects	 Unscheduled module replacement Delayed medical test results 	3	0.4	0.3	1.8E-11	31500	6.7E-08
2	Degradation of plastic encapsulation	 Discoloration Carbonization Polymer degradation at high temperature 	- Gradual decrease of optical output	- Excessive drift requires unscheduled calibration - Delayed medical test results	3	0.4	0.2	1.8E-11	31500	4.5E-08
3	Degradation of ITO layer	- Loss of Oxygen from ITO - De-adhesion	- Decrease of optical output - Non-uniform light emission	 Unscheduled module replacement Delayed medical test results 	4	0.3	0.1	1.8E-11	31500	1.7E-08
4	Packaging failure (Bond Wires)	 Electro-migration of bond wires Burnout due to excessive current Void formation at the solder metal stem Reaction of solder metal with package electrodes 	- Abrupt LED failure	- Unscheduled module replacement - Delayed medical test results	4	0.9	0.1	1.8E-11	31500	5.0E-08
5	Degradation of active layer	 Dislocation growth Metal diffusion in AlGaInP Heating effects of AlGaInP active region resulting in enhanced current injection 	- Gradual decrease of optical output	 Excessive drift requires unscheduled calibration Delayed medical test results 	4	0.4	0.4	1.8E-11	31500	9.0E-08
6	Degradation of P-N metal contacts	- Interdiffusion	- Change in IV characteristics	- Design will accommodate minor changes in IV characteristics	5	0.4	0.2	1.8E-11	31500	4.5E-08
									18	56

ARYLA

FMECA Residual (After Accelerated Life Test)

Sr.#	Failure Modes/Mech anisms	Causes	Local Effects at LED level	System Effects in Medical equipment	Seve rity	Failure Effect Probability (ß)	Failure Mode Ratio (a)	Failure Rate	Operating Time (T) in hrs	Criticality #
1	Packaging failure (Heat Sink)	Heat sink de-lamination	- Decrease of optical output - Local heating effects	 Unscheduled module replacement Delayed medical test results 	3	0.4	0.3	1.8E-11	31500	6.7E-08
2	Degradation of plastic encapsulation	 Discoloration Carbonization Polymer degradation at high temperature 	- Gradual decrease of optical output	 Excessive drift requires unscheduled calibration Delayed medical test results 	3	0.6	0.7	1.8E-11	31500	2.3E-07
3	Degradation of ITO layer	- Loss of Oxygen from ITO - De-adhesion	- Decrease of optical output - Non-uniform light emission	 Unscheduled module replacement Delayed medical test results 	4	0.3	0.1	1.8E-11	31500	1.7E-08
4	Packaging failure (Bond Wires)	 Electro-migration of bond wires Burnout due to excessive current Void formation at the solder metal stem Reaction of solder metal with package electrodes 	- Abrupt LED failure	 Unscheduled module replacement Delayed medical test results 	4	0.9	0.1	1.8E-11	31500	5.0E-08
5	Degradation of active layer	 Dislocation growth Metal diffusion in AlGaInP Heating effects of AlGaInP active region resulting in enhanced current injection 	- Gradual decrease of optical output	 Excessive drift requires unscheduled calibration Delayed medical test results 	4	0.6	0.6	1.8E-11	31500	2.0E-07
6	Degradation of P-N metal contacts	- Interdiffusion	- Change in IV characteristics	- Design will accommodate minor changes in IV characteristics	5	0.4	0.2	1.8E-11	31500	4.5E-08
									18	56

Conclusions

Performed Initial FMECA Analysis of LED for Medical Application Accelerated Life Testing (ALT) of AlGaInP LEDs Logarithmic degradation rate modeling Used Arrhenius Model for High Temperature Aging Used Inverse Power Law Model for High Current Aging Optical vs. Vf performance and Spectrum change during ALT Regression Analysis of Prior Publ. Data for AlGaInP / GaN LEDs Comparison of Prior published and Accelerated Life test data. Performed Residual FMECA Analysis after Accelerated Life Test Approach to verify LED suitability for Medical diagnostic appl

References

- [1] Aris Christou, 'Photonic Materials, Devices and Reliability', 2006
- [2] Mitsuo Fukuda, 'Reliability & Degradation of Semiconductor Lasers & LEDs', 1991
- [3] Shuji Nakamura & S.F. Chichibu, 'Introduction to Nitride Semiconductor Blue Lasers & LEDs', 2000
- [4] K. Wada & S.W. Pang, 'Defects in Optoelectronic Materials', 2001
- [5] Ali Mosleh, 'Bayesian Methods for Risk and Reliability', 2007
- [6] Vanderwater et al. 'High-brightness AlGaInP light emitting diodes', Proceedings of the IEEE, Vol. 85, Issue 11, Pages 1752-1764, Nov. 1997
- [7] Grillot et al. 'Sixty Thousand Hour Light Output Reliability of AlGaInP LEDs', IEEE Transactions on Device and Material Reliability, Vol. 6, No.4, Pages 564-574, Dec 2006
- [8] Kish et al. 'Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP LEDs', Electronics Letters, Vol. 32, Issue 2, Pages132–136, Jan 1996.
- [9] Chang et al. 'AlGaInP multiquantum well light-emitting diodes', IEE Proc.-Optoelectron., Vol. 144, No. 6, December 1997
- [10] Kish et al. 'High luminous flux semiconductor wafer-bonded AlGaInP/GaP large-area emitters', Electronics Letters, Vol. 30, Issue 21, Pages 1790-1792, October 1994
- [11] Krames et al. 'Status and Future of High-Power LEDs for Solid-State Lighting', Journal of Display Technology, Vol. 3, Issue 2, Pages 160–175, June 2007
- [12] Streubel et al. 'High Brightness AlGaInP Light-Emitting Diodes', IEEE Journal of Selected Topics in Quantum Electronics, Pages 321–332, March-April 2002
- [13] Altieri et al. 'Analysis of internal quantum efficiency of high-brightness AlGaInP LEDs', The 4th International Conference on Numerical Simulation of Optoelectronic Devices Proceedings NUSOD '04, Pages 13-14, August 2004
- [14] Liang et al. 'Comparison of temperature dependent electroluminescence of InGaN/GaN and AlGaInP based LEDs', Optoelectronics, The 6th Chinese Symposium Proceedings Pages 196-199, Sept. 2003.
- [15] Philips, 'LUXEON Reliability Datasheet RD25', Pages 9-10, July 2006
- [16] Lin et al. 'Highly reliable operation of indium tin oxide AlGaInP light emitting diodes', Electronics Letters, Vol. 30, No.21, October 1994
- [17] Su et al. 'High Reliability of AlGaInP LEDs with tensile strain barrier-reducing Layer', IEEE Photonics Technology Letters, Vol. 16, Issue 1, Pages 30-32, Jan. 2004
- [18] Lacey et al. 'The Reliability of AlGaInP visible LEDs', Quality & Rel. Engineering, Vol. 16, Issue 1, Pages 45 -

References (continued)

- [19] Dutta et al. 'High Brightness and Reliable AlGaInP-Based LED for POF Data Links', IEEE Photonics Technology Letters, Vol. 9, No 12, December 1997.
- [20] Meneghini et al. 'A review on the Reliability of GaN based LEDs', IEEE Transactions on Device and Materials Reliability, Vol. 8, No. 2, June 2008.
- [21] Meneghini et al. 'A review on the physical mechanisms that limit the reliability of GaN based LEDs', IEEE Transactions on Electron Devices, Vol. 51, Issue. 1, Jan 2010.
- [22] Levada et al. 'Analysis of DC Current Accelerated Life Tests of GaN LEDs Using a Weibull-Based Statistical Model', IEEE Transactions on Device and Materials Reliability, Vol. 5, No. 4, Dec 2005.
- [23] Buso et al. 'Performance Degradation of High-Brightness LEDs Under DC and Pulsed Bias', IEEE Transactions on Device and Materials Reliability, Vol. 8, No. 2, June 2008.
- [24] Trevisanello et al. 'Accelerated life test of High Brightness LEDs', IEEE Transactions on Device and Materials Reliability, Vol. 8, No. 2, June 2008.
- [25] Meneghesso et al. 'Degradation mechanisms of GaN-based LEDs after accelerated DC current aging', Electron Devices Meeting Digest, Pages 103-106, Dec 2002.
- [26] Levada et al. ' High Brightness InGaN LED degradation at high injection current bias', 44th Annual International Reliability Physics Symposium Proc., Pages 615-616, Mar 2006.
- [27] Meneghesso et al. 'Failure mechanisms of GaN-based LEDs related with instabilities in doping profile and deep levels', 42nd Annual International Reliability Physics Symposium Proceedings, Pages 474-478, April 2004.
- [28] Osinski et al. 'AlGaN/InGaN/GaN blue light emitting diode degradation under pulsed current stress', Applied Physics Letters, 69 (7), August 1996.
- [29] Barton et al. 'Life tests and failure mechanisms of GaN-AlGaN-InGaN LEDs', 35th Annual International Reliability Physics Symposium Proc, Pages 276-281, April 1997.
- [30] Barton et al. 'Degradation mechanisms in GaN/AlGaN/InGaN LEDs and LDs', 10th Conf. on Semiconducting & Insul. Materials Proc., Pages 259-262, June 1998.
- [31] Yanagisawa T., 'Estimation of the degradation of InGaN/A1GaN Blue LEDs', Microelectronic Reliability, Vol. 37, No. 8, pp. 1239-1241, 1997.
- [32] Yanagisawa T. ' The degradation of GaAlAs red LEDs under continuous and low-speed pulse operations ', Microelectronics Reliability 38, pp. 1627-1630, 1998.
- [33] Narendran et al. 'Life of LED-Based White Light Sources', IEEE/OSA Journal of Display Technology, Vol. 1, NQN PRSITE September 2005.